Układ serotonnergiczny i oś limbiczno-podwzgórzowo-
przysadkowo-nadnerczowa (LPPN) w depresji

Serotonergic system and limbic-hypothalamic-pituitary-adrenal
axis (LHPA axis) in depression

Wiesław Jerzy Cublea, Jerzy Landowski

Klinika Chorób Psychicznych i Zaburzeń Nierwicowych Katedry Chorób Psychicznych
AM w Gdańsku
Kierownik: prof. dr hab. n. med. J. Landowski

Summary

Depression is associated with the dysfunction in the serotonergic (5-HT, 5-hydroxy-
tryptamine) transmission and dysregulation of the limbic-hypothalamic-pituitary-adrenal
axis (LHPA axis). In depression, the 5-HT system exhibits impaired presynaptic activity of
5-HT neurons, an increased activity of central postsynaptic 5-HT2A receptors, decreased
activity of postsynaptic 5-HT1A receptors and altered synaptic 5-HT uptake. The coexistent
dysregulation of the LHPA axis is predominantly linked to GR (glucocorticoid receptor)
dysfunction within the limbic system along with hypercortisolemia, MR (mineralocorticoid
receptor) and GR receptors imbalance which results in impaired negative feedback mecha-
nisms in the LHPA axis loops.

Several clinical and animal studies revealed the involvement of 5-HT1A system in LHPA
axis regulatory mechanisms. That association seems to be dependent on the corticoid levels.
The impaired GR receptor function and MR/GR receptors imbalance alter the negative feedback
regulation within the LHPA axis which is followed by its dysregulation and hypercortisolemia
that is further associated with the decreased activity of postsynaptic 5-HT1A receptors resulting
in a serotonergic dysfunction.

The aim of this paper is to discuss and review the current data on the existence of the
hypothetical relationship between the activity of the serotonergic system, predominantly
5-HT1A receptors, and LHPA axis in depression.

Słowa kluczne: depresja, układ serotonnergiczny, oś limbiczno-podwzgórzowo-przysadko-
wo-nadnerczowa, receptor 5-HT1A, receptor MR, receptor GR, glikokortykoidy

Key words: depression, serotonergic system, limbic-hypothalamic-pituitary-adrenal axis,
5-HT1A receptor, MR receptor, GR receptor, glucocorticoids

Wstęp

Układy nerwowy i endokrynny stanowią nierozwalaną, uzupełniającą się całość
strukturalno-czynnościową, pełniące funkcje regulacyjne w organizmie. W depresji
obserwowana jest dysfunkcja przekaźnictwa serotoninergicznego oraz wzmocniona aktywność i dysregulacja osi limbiczno-podwzgórzowo-przysadkowo-nadnerczowej (LPPN). Zjawiska te zdają się odgrywać istotną rolę w jej patogenezie.

Badania zwierząt oraz ludzi zdrowych i cierpiących na depresję wskazują na istnienie wzajemnych powiązań między transmisją serotoninergiczną poprzez receptor postsynaptyczny 5-HT₃A (5-HT ang. 5-hydroxytryptamin) a mechanizmem sprzężenia zwrotnego osi LPPN. Celem pracy jest przegląd doniesień oraz omówienie wzajemnych relacji dotyczących hipotetycznego istnienia związku zachodzącego pomiędzy układem serotoninergicznym a osią LPPN w depresji.

Można przypuszczać, że u chorych z depresją podwyższone stężenie glikokortykoidów i osłabiona transmisja serotoninergiczna poprzez receptor 5-HT₁A korelują ze sobą. Zależność ta wydaje się łączyć odrębne dotychczas hipotezy powstawania depresji: serotoninową i glikokortykoidową.

Dysfunkcja układu serotoninergicznego w depresji – rola receptora 5-HT₁A

Rolę układu serotoninergicznego w patogenezie depresji podkreśla hipoteza serotoninowa, sformułowana w pierwotnej postaci prawie 40 lat temu. Zakłada ona, że objawy depresji wynikają z obniżenia stężenia serotonininy w transmisji synaptycznej w ośrodkowym układzie nerwowym. Jednocześnie wiadomo, że mechanizm działania leków przeciwdepresyjnych polega na zwiększeniu aktywności układu serotoninowego przez zmniejszenie doneuronowego wychwytu serotonininy lub hamowanie aktywności monoaminooksydazy (MAO ang. monoamine oxidase), enzymu rozkładającego serotoninę [1, 2, 3, 4, 5, 6].

W depresji, w zakresie układu 5-HT obserwuje się obniżenie aktywności presynaptycznej neuronów 5-HT, zwiększona wrażliwość ośrodkowych receptorów postsynaptycznych 5-HT₂A, spadek wrażliwości receptorów postsynaptycznych 5-HT₁A oraz zmiany w wychwycie 5-HT w obrębie synapsy. W myśl zmodyfikowanej hipotezy serotoninowej, w depresji dochodzi do dysregulacji receptorów serotoninowych, polegającej na „up-regulacji” receptorów 5-HT₂A i słabszej transmisji serotoninergicznej poprzez receptor postsynaptyczny 5-HT₁A, co wynika ma z osłabienia aktywności części presynaptycznej układu 5-HT₁A i obniżonej wrażliwości/liczby samych receptorów 5-HT₁A. Sugestuje się jednocześnie, że receptory 5-HT₂ podważają zaburzenia transdukcji sygnałów w wewnątrzkomórkowych, w związku z czym nawet zwiększenie liczby receptorów 5-HT₁A nie umożliwia fiziologicznej odpowiedzi [7].

Pośród receptorów rodziny 5-HT, receptor 5-HT₁A wydaje się najistotniejszy w zrozumieniu biologicznych podstaw depresji. Wrażliwość 5-HT₁A zmienia się w trakcie farmakoterapii lekami przeciwdepresyjnymi [8], a w badaniach pacjentów z depresją przeprowadzonych z użyciem agonistów 5-HT₁A wykazano spadek wrażliwości receptora 5-HT₁A [9], co w pewnej mierze może zależeć od stężenia glikokortykoidów. Wiadomo również, że aktywacja serotoninergiczna w trakcie farmakoterapii depresji modyfikuje ujemnie sprzężenie zwrotne glikokortykoidów na funkcję osi LPPN.

W badaniach dotyczących funkcji receptora 5-HT₁A, prowadzonych na myszach pozbawionych w wyniku manipulacji genetycznej tego receptora, obserwowano
zachowania odpowiadające w warunkach modelowych lękowi i depresji [10, 11]. U zdrowych zwierząt, po ekspozycji na stres lub podaniu glikokortykoidów, dochodzi do „down-regulacji” układu serotoninowego, obniżenia stężenia serotoniny w mózgu i zmniejszenia liczby receptorów serotoninowych 5-HT₁A [12, 13].

Serotonina, przez układ 5-HT₁A, ma również wpływ regulujący czynność osi LPPN, modulując wydzielenie kortykoliberyny (CRH, ang. corticotropin releasing hormone) i hormonu adrenokorytokotropowego (ACTH, ang. adrenocorticotropic hormone) z przysadki mózgowej [14, 15]. Neurony układu serotoninowego znajdujące się w obrębie jader szwu wysyłają projekcje tworzące połączenia syntaptyczne z neuronami zawierającymi CRH w obrębie jądra przykomorowego podwzgórza (PVN, ang. periventricular nucleus) i mogą tym samym regulować uwalnianie CRH, ACTH oraz glikokortykoidów [14, 16, 17].

Odczuwany wpływ układu serotoninowego na oś LPPN ma więc charakter dwukierunkowy, a związek osi LPPN i układu 5-HT₁A wydaje się mieć kluczowe znaczenie w zrozumieniu patomechanizmu depresji.

Regulacja osi limbiczno-podwzgórzo-przy sadkowo-nadnerczowej

Przez lata uważane, że glikokortykoidy oddziałują głównie na poziomie obwodowego układu nerwowego, połączonego kompleksowo-receptorowym z receptorem GR, obecnym w większości narządów obwodowych. Hipoteza ta uległa zmianie z odkryciem w 1986 roku przez McEwechem receptorów glikokortykoidowych w obrębie hipokampu [18].

Badania psychoneuroendokrynologiczne obejmujące glikokortykoidy dotyczą oznaczeń koryntołu, obecnego u ludzi, oraz koryntozerum, badanego w modelach zwierzęcych. Receptory GR i MR w obrębie mózgowia wykazują różnym zróżnicowaniem i powołaniem wobec glikokortykoidów. Receptor MR występuje głównie w obrębie układu limbicznego (hipokamp, ciało migdałowate, przegoda), podczas gdy receptor GR występuje w całym mózgu i jego ekspresja jest szczególnie wysoka w rejony zaangażowanych w mechanizm stresu, jak podwzgórze, hipokamp, ciało migdałowate, szereg jąder pnia mózgu oraz przysadki mózgowej [19, 20]. Receptory MR i GR występują wspólnie w najwyższym stężeniu w hipokampie [21].

Glikokortykoidy docierające z krwi do mózgu przechodzą dzięki właściwościom lipofilnym przez barierę krew-mózg, następnie przez błony komórkowe, trafiając do cytoplazmy, gdzie wchodzą się w cytoplazmatyczne receptory GR i MR. Kompleks steryd-receptor ulega translokacji z cytoplasmy do jądra komórkowego, gdzie jako dimer wiąże się z cytoplazmatycznymi receptory DNA, ang. deoxiribonuklein acid) i działa jako czynnik transkrypcyjny dla białek receptorowych i enzymatycznych. W rezultacie powoduje to wzrost lub spadek transkrypcji genów i zmiany w syntezie białek. Receptory MR i GR mogą tworzyć zarówno homodimery, jak i bardziej aktywne od nich heterodimery, wciągając się z GRE (ang. glucocorticoid response element) będącym czynnikiem transkrypcyjnym, wpływającym na modulację ekspresji regulowanych przez nie genów [22].

Koryntydy regulują oś LPPN w mechanizmie ujemnego sprzężenia zwrotnego za pośrednictwem receptorów GR zlokalizowanych w PVN w podwzgórzu i przednim
placie przysadki mózgowej oraz wzajemnych relacji między receptorami MR i GR w hipokampie [23, 24]. Toniczne działanie hamujące na oś LPPN glikokortykoidów w niskich stężeniach, obserwowanych w rytmie okołoodobowym, w ywierane jest przez receptor MR na poziomie hipokampie [23, 25], z dodatkowym zaangażowaniem receptora GR w warunkach zwiększonego stężenia glikokortykoidów, powodując supresję transkrypcji genów dla CRH i ACTH [26, 27, 28]. Receptor MR tonicznie hamuje produkcję i wydzielanie CRH w podwórzu, podczas gdy receptor GR mediuje odpowiedź na glikokortykoidy w wysokich stężeniach, biorąc udział w zakończeniu reakcji po ekspozycji na stres [25, 29, 30, 31]. W warunkach fizjologicznych, w odpowiedzi na wysokie stężenie glikokortykoidów aktywowane są synergicznie receptory MR i GR, co prowadzi do supresji osi LPPN [23, 24]. Przy niskim, podstawowym stężeniu glikokortykoidów jest zajęty około 80% receptorów MR, podczas gdy receptor GR jest w sposób znaczący zajęty dopiero przy stężeniu glikokortykoidów występującym w stresie lub w czasie szczęśliwych stężeń okołoodobowych. Powinowactwo receptora MR do glikokortykoidów jest około 10 razy wyższe od receptora GR [30]. Receptor MR determinuje wrażliwość osi LPPN w odpowiedzi na bodźce, biorąc pośrednio udział w jego ocenie i przygotowując organizm na odpowiedź mającą na celu ograniczenie zmian i utrzymanie homeostazy ustroju. Aktywacja receptora GR występuje po uprzedniej aktywacji receptora MR i jest niezbędna do zakończenia odpowiedzi osi LPPN, i powoduje do stanu równowagi po zadanym stresie, ułatwiając adaptację i przygotowanie na następny stresy [27, 32]. Wsywienia funkcja receptora GR prowadzi do dysregulacji osi LPPN, obserwowanej w depresji. W hiperkortykolemii hipokampalne receptory GR hamują działanie receptorów MR, prowadząc do destabilizacji i niemożności hamowania zwrotnego osi LPPN. W kontekście roli receptorów MR i GR w dysregulacji osi LPPN i utrzymaniu homeostazy ważne jest więc nie upośledzenie funkcji receptora MR, lecz podlegająca wpływowi glikokortykoidów równoważna w aktywności tych receptorów, szczególnie w obrębie hipokampie [27, 29].

Dysregulacja osi limbiczno-podwórzowo-przysadkowo-nadnerczowej w depresji

W 1956 roku Boord i wsp. [33] odkryli podwyższone stężenie glikokortykoidów w osochu pacjentów z depresją. W 1964 roku Gibbons [34] opisał podwyższone stężenie glikokortykoidów w osochu pacjentów z depresją, które ulegało normalizacji po uzyskaniu remisji, co stało się początkiem poszukiwań zależności zachodzących między układem nerwowym a endokrynny.

Nadmierna aktywacja osi LPPN w depresji jest jednym z najlepiej zbadanych mechanizmów w psychiatrii biologicznej [35, 36]. Zaburzenia w obrębie osi LPPN obserwane u 50–75% pacjentów ze zdiagnozowanych duży depresja obejmują podwyższone stężenie glikokortykoidów w osochu, moczu oraz płynie mózgowo-rdzeniowym, zmiany dobowego profilu wydzielania glikokortykoidów z częstszymi i dłuższymi okresami sekrecji, zwiększone wydzielanie glikokortykoidów w odpowiedzi na ACTH, wzrost objętości przysadki mózgowej oraz nadnercz. Dodatkowo zaobserwowano w tej grupie chorych w zrost stężenia CRH w płynie mózgowo-rdzeniowym,
wzrost stężenia mRNA CRH w PVN, hipersekrecję CRH w podwzgórzu oraz spadek odpowiedzi ACTH po podaniu CRH [5, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Stwierdzono również zmniejszone wydzielenie glikokortykoidów oraz ACTH po podaniu dexametazonu, w teście deksametazonowym (DST – dexamethasone suppression test), a w jego modifikacji, łączonym teście deksametazonowym – po podaniu CRH pacjentom obciążonym wstępnie deksametazonem (combined dexamethasone/CRH test; Dex/CRH test) [39, 40, 41, 46]. To ostatnie zjawisko wynika ze zmniejszonej wrażliwości receptorów na kortykoidy w przysadce mózgowej [27, 35, 47].

Obserwowana dysregulacja osi LPPN doprowadziła do sformułowania hipotezy łączącej depresję z dysfunkcją receptora kortykoidowego, w której upośledzona funkcja receptora stanowi pierwotny mechanizm patogenetyczny depresji. Defekt regulacji osi LPPN ma dotyczyć wadliwej funkcji receptorów GR, które przekazują sygnał hamujący funkcjonalizację osi, prowadzące do niemożności wygaszenia reakcji stresowej w warunkach hiperkortykolemi, i w konsekwencji do rozwinięcia się stresu przewlekłego, który ujawnia istniejące defekty w obrębie układów monoaminergicznych, powodujące wystąpienie depresji [35, 48]. Nadmierna aktywność CRH i współistniejąca dysfunkcja receptorów kortykoidowych może leżeć u podłoża dysregulacji osi LPPN w depresji [49]. Wzrost wydzielenia glikokortykoidów spowodowany upośledzonym mechanizmem ujawnia się w postaci zwrotnego sprzężenia, w którym stymulowana jest puberty glikokortykoidy [50]. W efekcie powoduje to wzrost stymulacji przez ciało migdałowate PVN, które wpływa pobudzając na os LPPN [47]. W takim mechanizmie może wystąpić dodatkowo sprzężenie zwrotne między ciałem migdałowatym a PVN, dające w rezultacie nadmierną aktywność osi LPPN [49].

Znajduje to potwierdzenie w obserwowanym w depresji wysokim stężeniu CRH i argininowazopresyny (AVP, ang. arginine vasopressin), spowodowanym wadliwą regulacją ekspresji CRH oraz AVP, za którą odpowiedzialny jest receptor GR. Wadliwa funkcja receptora GR jest również widoczna w wynikach testu Dex/CRH zdrowych członków rodzin obciążonych wysokim ryzykiem wystąpienia zaburzeń afektywnych [51, 52]. Hipoteza ta bywa podważana [53, 54], jednak znajduje potwierdzenie w badaniach neuroendokrynologicznych z użyciem testu DST lub testu Dex/CRH [46, 55, 56, 57], które dostarczają danych o czynności receptorów GR i stanie mechanizmu ujemnego sprzężenia zwrotnego osi LPPN na poziomie przysadki mózgowej, gdyż oparte są na pomiarze stężenia endogennego glikokortykoidów i ACTH, ulegających supresji deksametazonem, wiążącym się specyficznie z receptorem GR.

U chorych z depresją stwierdzano również zwiększoną aktywność receptora MR, w porównaniu z ludźmi zdrowymi. Świadczy to o zaburzeniu równowagi MR/GR, która wpływa na aktywność serotoninergiczną i wskazuje na zaburzoną zdolność do utrzymania allostazy oraz podatność na dysregulację osi LPPN [47, 58]. W badaniu z użyciem trójprzepływowych leków przeciwddepresyjnych wykazano, że poza wzmocnieniem przekaźnictwa monoaminergicznego powodują one wzrost ekspresji receptorów kortykosteroidowych w mózgu, w szczególności MR, co towarzyszy normalizacji osi LPPN. W kontekście badań, w których podanie antymineralokortykoidów
upośledzało działanie leków przeciwdepresyjnych, wskazuje to na rolę receptora MR w etiologii depresji [27].

Glikokortykoidowa hipoteza depresji zakłada, że normalizacja autoregulacji osi LPPN wynika ze zwiększonej wrażliwości receptora GR, uzyskiwanej w wyniku stosowania leków przeciwdepresyjnych, i sugeruje, że może to być ich główny mechanizm działania. W hipotezie tej podaje się jako pierwszy mechanizm działania leków przeciwdepresyjnych stymulację ekspresji genów dla receptorów korykoidowych, co wtedy powoduje normalizację osi LPPN [59]. W modelach komórkowych (HT 22) podanie leków przeciwdepresyjnych różnych grup powoduje wzrost wrażliwości receptorów GR już po 24 godzinach [60]. W badaniach na modelach zwierzących stwierdzono, że długotrwałe podawanie leków przeciwdepresyjnych powoduje wzrost stężenia mRNA receptora GR i lub wzrost wiązania receptorów GR w obszarach mózgu istotnych dla regulacji osi LPPN, jak hipokamp i podwzgórze [61, 62, 63, 64, 65, 66, 67, 68, 69, 70], oraz spadek ekspresji genu dla CRH w PVN [66, 71]. U ludzi, w przebiegu terapii lekami przeciwdepresyjnymi, wpływ wywieranego na receptory korykoidowe jest jednoznaczny z normalizacją funkcji osi LPPN i wynika prawdopodobnie z interakcji pomiędzy korykoidami a układem serotonergicznym [65, 72]. Wykazano również w zрост stężeni receptorów MR w ośrodkowym układzie nerwowym w wyniku długotrwałej terapii lekami przeciwdepresyjnymi [64, 65, 72, 73].

Leki przeciwdepresyjne powodują w zrost translokacji receptora GR z cytoplasmy do jądra komórkowego, wzrost czynności receptora GR (transkrypcji genów związanych z GR) i wzrost wewnątrzkomórkowego stężenia glikokortykoidów. U szczurów szerok leków przeciwdepresyjnych wywołuje inhibicję błonowych transporterów dla steroidów, odpowiedzialnych za aktywny transport steroidów z komórki. Powoduje to w yzej wspomniane wzrost stężenia glikokortykoidów w neuronach. Można postawić hipotezę, że wyższe stężenie korykoidów aktywuje sprzężenie zwrotne osi LPPN [74], co wskazuje, że normalizacja osi LPPN w depresji wynikająca z terapii lekami przeciwdepresyjnymi związana jest z wzrostem efektywności transdukcji sygnału przez korykoidy. Wykazano również skuteczność strategii terapeutycznych w depresji, skierowanych przeciw hiperkoryzolemii, z zastosowaniem inhibitorów syntezy lub antagonistów receptora GR w celu bezpośredniego działania na os LPPN. Metapyron, inhibitor syntezy glikokortykoidów i korykosteronu, wykazał swoje działanie przeciwdepresyjne na dwóch modelach zwierzących depresji [75]. Ketokonazoł, antagonist receptorów GR i inhibitor syntezy GR, w badaniu z podwójnie ślepą próbą, okazał się skuteczny w grupie pacjentów z depresją przebiegającą z hiperkoryzolemii [76]. Mifesipron (RU 486), antagonist receptoru korykoidowego, również ma potencjalne właściwości przeciwdepresyjne [77]. Jednakże badania te mają charakter eksperymentalny i wymagają dalszego potwierdzenia.

Dysregulacja osi limbiczno-podwzgórzowo-przysadkowo-nadnerczowej w depresji a aktywność układu serotonergicznego – receptor 5-HT$_{1A}$

Istnieją dwie hipotezy łączące rolę układu 5-HT$_{1A}$ i osi LPPN w depresji. Pierwsza postuluje pierwotny spadek aktywności układu 5-HT$_{1A}$ w obrębie hipokampu,
co wtórnie prowadzić ma do zwiększonej aktywności osi LPPN i jej dysregulacji. W świetle drugiej – podwyszone stężenia glikokortykoidów i obniżona aktywność 5-HT w depresji tworzy ciąg przyczynowo-skutkowy, w którym podwyższone stężenie glikokortykoidów w surowicy powoduje spadek aktywności serotonergicznej w ośrodkówym układzie nerwowym. Glikokortykoidy mają odgrywać takie rolę w biologicznym mechanizmie powstawania depresji u ludzi o określonej predyspozycji biologicznej, wynikającą z wadiwej funkcji receptora GR, co uniemożliwiać ma prawidłowe zadziałańe mechanizmu ujemnego sprzężenia zwrotnego i prowadzić do dysregulacji osi LPPN, hiperkoryzolemii, a następnie, wtórnie, do spadku aktywności układu 5-HT₁ₐ w części postsynaptycznej [9, 78]. Pomimo że hipotezy te mogą się wydawać sprzeczne, stanowią prawdopodobne opis jednego zjawiska, w którym nie można mówić o ciągu przyczynowo-skutkowym, lecz raczej o zaburzeniu procesów regulacji w układzie serotonergicznym oraz w obrębie osi LPPN.

Szczególnym miejscem wzajemnego oddziaływania układu serotonergicznego i glikokortykoidów wydaje się hipokamp, w którym receptor 5-HT₁ₐ, będący receptorem 5-HT₁ₐ obecnym w tym rejencie w najwyższym stężeniu, występuje wraz z receptorami GR i MR [79]. W hipokampie układ serotonergiczny, przez receptor 5-HT₁ₐ, wpływa na regulację osi LPPN poprzez receptory GR i MR, powodując nasilenie hamowanie wydzielania CRH, wywierane przez receptor GR. Równolegle glikokortykoidy wpływają w sposób specyficzny na neurotransmisję serotonergiczną w obrębie hipokampu. Glikokortykoidy w strefnym zakresie stężeń powodują nasilenie się neurotransmisji serotonergicznej przez receptor 5-HT₁ₐ, w wysokich lub niskich stężeniach – jej oslabienie. Osłabione hamowanie zwrotne osi LPPN przez glikokortykoidy, wynikające z zmniejszonej liczby wawazliwości receptorów GR, z dysfunkcją serotonergiczną w układzie limbicznym, obrazowaną jako osłabiona transmisja 5-HT₁ₐ, mają potencjalnie wzajemnie się wzmacniać, prowadząc do rozwinięcia się zespołu depresyjnego, a inne zaburzenia neuroendokrynne wydają się wtórne w stosunku do nich lub w wyniku z zaburzeń w innych układach neuroprzekaźnikowych [80].

Toniczna hipersekrekcja glikokortykoidów u pacjentów cierpiących z powodu depresji oraz w modelach zwierzących wydaje się odpowiedzialna za spadek liczby/wawazliwości ośrodkowych receptorów 5-HT₁ₐ, spadek ekspresji mRNA dla receptora 5-HT₁ₐ, w neuronach i limfyctach, osłabienie przekaźnictwa 5-HT₁ₐ oraz „up-regulację” receptorów 5-HT₁ₐ [27, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. W depresji widoczna jest również obniżona odpowiedź układu neuroendokrynnej na stymulację agonistą 5-HT w próbach typu „challenge-studies” z użyciem azapironów. Efekt ten prawdopodobnie spowodowany jest hiperkoryzolemii, która powoduje spadek liczby/wawazliwości ośrodkowych receptorów 5-HT₁ₐ [9, 92]. Receptory MR i GR przypuszczalnie odgrywają rolę w regulacji ekspresji receptorów 5-HT. MR ma być głównie zaangażowany w spadek liczby/wawazliwości receptora 5-HT₁ₐ obserwowany w ekspozycji organizmu na stres przewlekły, w depresji lub podwyższone poziom glikokortykoidów [94, 95], podczas gdy receptor GR ma odpowiadać za wzrost ekspresji receptora 5-HT₁ₐ po ekspozycji na stres lub po egzogennym podaniu glikokortykoidów [93, 96, 97, 98]. W badaniu poświęconym funkcji receptora MR w depresji wykazano, że pomimo hiperkoryzolemii wykazuje on zwiększoną aktywność w stosunku do grupy
kontrolnej, co może tłumaczyć „down-regulację” receptora 5-HT
widoczną w innych badaniach [58]. Obserwacje te korespondują z hipotezą, dotyczącą czynnościowej
opozycji postsynaptycznych receptorów 5-HT
iorz roli ich zaburzonej wzajemnej równowagi w patogenezie depresji, i mechanizmów towarzyszących efektem
działania leków przeciwdpressyjnych [99, 100, 101].

Przekątnictwo serotoninergiczne w obrębie zakretu zębatego hipokampu ulega zaburzeniu w obecności hiperkoryzolemii wywołanej przewlekłym stresem. W badaniach na wyselekcjonowanych liniach myszy, charakteryzujących się niskim stężeniem glikokoryktydów, wykazano zwiększoną ekspresję receptora 5-HT
Wykazano również, że w warunkach przewlekłego stresu z hiperkoryzolemii dochodzi do upośledzenia przekaźnictwa serotoninergicznego w obrębie hipokampu, co koresponduje z obserwacjami poczynionymi w depresji [27]. W badaniach na zwierzętach wykazano, że w wyniku adrenektomii, w obrębie hipokampu dochodzi do wzrostu ekspresji genów dla receptora 5-HT
szczególnie w obszarze zakretu zębatego, i że zjawisku temu można przeciwdziałać, podając niskie dawki glikokoryktydów [83, 102]. W badaniach elektrofizjologicznych zaobserwowano, że hiperpolaryzacją w obrębie neuronów CA1 oraz zakretu zębatego, wywołaną poprzez 5-HT podlega supresji przez aktywację receptora MR [79]. Wysokie stężenie glikokoryktydów powodujące jednocześnie zajęcie receptorów MR i GR znosi efekt wywieranego przez receptor MR i ma powodować znaczne hiperpolaryzację podlegającą mediacji przez receptor 5-HT
[103]. W przypadku, gdy stężenie glikokoryktydów utrzymuje się w wyniku ich egzogennego podania, depresji lub ekspozycji na stres na wysokim poziomie przez dłuższy okres, dochodzi do mechanizmu „down-regulacji” receptora 5-HT
oraz do spadku jego wraźliwości [96]. Efekt ten spowodowany jest zwiększoną aktywacją receptora MR [105]. Eksperymentalne „spłaszczenie” dziegnego rytmu wydzielania glikokoryktydów powoduje zwiększoną aktywację receptora MR, co w efekcie prowadzi do zmniejszenia się ekspresji i wraźliwości receptorów 5-HT w obrębie hipokampu [105]. Badania powyższe sugerują, że ekspresja mRNA dla receptora 5-HT oraz jego czynność są ionicznie hamowane przez glikokoryktydy, gdy hormon ten wiąże się głównie z receptorami MR [107, 108]. Wskazuje to na istotną rolę stężenia koryktydów w powstawaniu depresji i ma swoje implikacje terapeutyczne [27].

Istotną role w hiperkoryzolemii oraz zakretu 5-HT w kontekście zjawiska neuroplastyczności. Proces remodelingu neuronów hipokampu, obserwowany w warunkach hiperkoryzolemii, może być modulowany za pomocą leków przeciwdpressyjnych. W warunkach stresu przewlekłego, tianeptyny, powodująca zwiększy
wychwyty doneuronalny serotoniny, powoduje zatrzymanie remodelingu dendrytów regionu CA3 hipokampu, a leki z grupy selektywnych inhibitorów wychwytu zwrotnego serotoniny promują neurogenację w obrębie ośrodkowego układu nerwowego, przeciwdziałając wpływowi szkodliwych skutków stresu przewlekłego, głównie hiperkoryzolemii, na ośrodkowy układ nerwowy [109, 110, 111].

Hiperkoryzolemia z towarzyszącym jej spadkiem liczby/wraźliwości receptora 5-HT sugeruje potencjalną efektywność terapii antyglikokoryktydowej, która skutkować może działaniem przeciwdpressyjnym na drodze normalizacji funkcji receptora
5-HT₁₆. W badaniu oceniającym zależność między wrażliwością receptora 5-HT₁₆ a osią LPPN w grupie 21 pacjentów z dużą depresją wysunięto hipotezę, że możliwa dysfunkcja w zakresie przekładnictwa 5-HT₁₆ może wynikać z hiperkortyzolemii i mieć charakter zależności odwrotnej proporcjonalnej [112].

Podsumowanie

W dotychczasowych koncepcjach patogenezy depresji dominuje hipoteza monoaminaergiczna, oparta na dowodach dotyczących mechanizmu działania większości leków przeciwdepresyjnych. Na równorzędną uwagę zasługuje glikokortykoidowa hipoteza depresji, znajdująca wsparcie w modelach eksperymentalnych oraz w nielicznych badaniach klinicznych z użyciem preparatów antyglikokortykoidowych. Obie hipotezy można interpretować jako składowe wspólnego mechanizmu patogenezycznego depresji, w którym zaburzone czynności osi LPPN i hiperkortyzolemii towarzyszą zaburzeniom w obrębie układu serotoninergicznego. Oba układy następnie ustalają nowy, patologiczny punkt wzajemnej równowagi.

Badanie mechanizmów regulacyjnych pomiędzy osią LPPN a układem serotoninergicznym, głównie receptorem 5-HT₁₆, w obrębie układu limbicznego pozwala na funkcjonalne powiązanie niedoboru serotoniny w depresji i hiperkortyzolemii. Wydaje się, że opisana zależność istniejąca między dysregulacją osi LPPN, związaną z upośledzoną funkcją receptorów GR i MR a hiperkortyzolemii oraz zaburzeniami w przejawach serotoninergicznym stanowi ciekawe połączenie integrujące hipotezy depresji serotoninergicznej oraz glikokortykoidowej.

Серотонинергическая система и лимбическую-гипофизарно-надпочечниковая ось (ЛГН) при депрессии

Содержание

Депрессия сопровождается дисфункцией серотонинергического провождения (5-HT ант: 5-гидрокситриптамины), а также с увеличенной активностью и дискретацией ЛГН оси. При депрессии в радиусе системы 5-HT наблюдается снижение прециметаптической активности нейронов 5-HT, увеличенной чувствительности постсинаптических рецепторов 5-HT2A, снижение чувствительности постсинаптических рецепторов 5-HT1A, а также изменения в захвате 5-HT в предсердии. Одновременно происходит дискретация оси ЛГН, связанная с нарушенной функцией глюкокортикоксидового рецептора (ГР ант: глюкокортикоксид рецептор), т.е. в пределах лимбической системы, проявляющейся гиперкортизolemней, нарушенными равновесием минералокортикоидов (МР ант: минералокортикоид рецептор) и ГР, а также нарушенным механизмом орбитальной обратной связи в радиусе коротких и длинных петель оси ЛГН.

Экспериментальные исследования на моделях живых, а также у людей, как здоровых, так и страдающих депрессией, указывают на существование взаимных связей между рецепторами 5-HT1A и механизмом обратной связи оси ЛГН. Эта релияция, по-видимому, в определенной степени зависит от концентрации глюкокортикоидов. Неправильная функция рецепторов ГР, а также нарушенное равновесие рецепторов МР, ГР препятствуют нормальному действию орбитального механизма обратной связи в радиусе оси ЛГН. При этом появляется дискретация оси ЛГН и гиперкортизolemией которой сопутствует снижение активности системы 5-HT А11 в постсинаптической части и дисфункции серотонинергической системы. Заданием настоящей работы является обзор и обсуждение доступных в настоящее время
Серотонинергес System und limbisch - hypothalamisch - pituitar - adrenale Achse (LHPA - Achse) in Depression

Zusammenfassung

Le système sérotoninergique et l'axe limbique-hypothalamique-pituitaire-surrénalé (LPPN-LHPS) dans la dépression

Résumé

La dépression se lie avec les troubles de la transmission sérotoninergique (5-HT – 5 hydroxytryptamine-angled), avec l’activité augmentée et la dérégulation de l’axe limbique-hypothalamique-pituitaire-surrénalé (LHPS). Pendant la dépression dans le système 5-HT on observe : diminution de l’activité présynaptique des neurones 5-HT, plus grande activité des récepteurs centraux postsynaptiques 5-HT2A, diminution de l’activité des récepteurs postsynaptiques 5-HT1A et les changements du ressaisissement de 5-HT dans la synapse. En même temps on voit la dérégulation de l’axe LHPS, liée avec la fonction troublée du récepteur GR (glucocorticoid receptor-angled), surtout dans le système limbique, se manifestant par l’hypercortisolémie, balance dérégulée des récepteurs MR (mineralocorticoid receptor-angled) et GR ainsi que le mécanisme régulateur trouvé de l’axe LHPS.

Ce travail discute et donne une revue des données concernant ces relations mutuelles du système sérotoninergique et l’axe LHPS, et surtout du récepteur 5-HT 1A, chez les patients souffrant de la dépression.

Piśmiennictwo

74. Pariazzo CM. The in vitro effects of antidepressants on the glucocorticoid receptor and the potential relevance for the mechanism of action of this class of drugs. Int, J, Neuropsychopharmacol, 2004; 1: 123.

104. Watanabe Y, Sakai RR, McEwen BS, Mendelson S. *Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin.* Brain Res., 1993; 615: 87–94.

105. Meijer OC, van Oosten RV, de Kloet ER. *Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine (1A) receptor expression in adrenalectomized rats: implication for the pathogenesis of depression.* Neurosci., 1997; 80: 419–426.

Otrzymano: 22.08.2005
Zareczczono: 11.10.2005
Przyjęto do druku: 2.11.2005

Adres: Wiesław Jerzy Cubala
Klinika Chorób Psychicznych
i Zaburzeń Nerwicowych Katedry Chorób Psychicznych AM
80–952 Gdańsk, ul. Dębinki 7, bud. 25